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Physical models of various phenomena are often represented by a mathematical model
where the output(s) of interest have a multivariate dependence on the inputs. Frequently,
the underlying laws governing this dependence are not known and one has to interpolate the
mathematical model from a finite number of output samples. Multivariate approximation is
normally viewed as suffering from the curse of dimensionality as the number of sample points
needed to learn the function to a sufficient accuracy increases exponentially with the dimen-
sionality of the function. However, the outputs of most physical systems are mathematically
well behaved and the scarcity of the data is usually compensated for by additional assump-
tions on the function (i.e., imposition of smoothness conditions or confinement to a specific
function space). High dimensional model representations (HDMR) are a particular family of
representations where each term in the representation reflects the individual or cooperative
contributions of the inputs upon the output. The main assumption of this paper is that for most
well defined physical systems the output can be approximated by the sum of these hierarchi-
cal functions whose dimensionality is much smaller than the dimensionality of the output.
This ansatz can dramatically reduce the sampling effort in representing the multivariate func-
tion. HDMR has a variety of applications where an efficient representation of multivariate
functions arise with scarce data. The formulation of HDMR in this paper assumes that the
data is randomly scattered throughout the domain of the output. Under these conditions and
the assumptions underlying the HDMR it is argued that the number of samples needed for
representation to a given tolerance is invariant to the dimensionality of the function, thereby
providing for a very efficient means to perform high dimensional interpolation. Selected ap-
plications of HDMR’s are presented from sensitivity analysis and time-series analysis.
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1. Introduction

The underlying map between the output of a physical system and its input variables
is most often unknown or seriously lacking in a priori information. The characterization
of the inputs is an important aspect of the modelling process and in this paper we will
assume that it is known which inputs may potentially affect a certain output. Deducing
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the structure of an output depending on an n-dimensional space for n� 1 is an arduous
task conventionally viewed as suffering from the curse of dimensionality. Conventional
logic implies that the computational complexity of sampling the input-output map scales
exponentially as sn where s is a parameter specific to the problem and n is the relevant
dimension. In applications, such maps arise from the underlying systems being either a
computational model or an observational relationship. Severe difficulty in exploring the
map occurs when a single output sample is expensive to attain, and then the efficiency
of map representation and its need for sampling become critical. A related common
problem where the curse of dimensionality arises is the integration of high dimensional
functions [1]. The number of integrand evaluations increases exponentially with the di-
mension utilizing standard quadrature methods. The distribution of the samples used
for high dimensional integration is crucial and it will be equally important in the multi-
variate approximation presented below. Monte Carlo and associated sampling schemes
are the only practical means for performing high dimensional integrals. The difference
between the sampling cost for high dimensional integration using a regular grid versus
Monte Carlo integration is dramatic, as the former scales exponentially with n while the
latter is dimension independent [2], assuming that the integrand is sufficently smooth.

One way to deal with the curse of dimensionality in approximating multivariate
functions is to introduce dimension reduction techniques often inspired by a theorem
of Kolmogorov [3] which states that a multivariate function defined on the unit cube
Kn = [0, 1]n can be represented the following way:

f (x1, x2, . . . , xn) =
2n+1∑
q=1

g
(
λ1φq(x1)+ · · · + λnφq(xn)

)
, (1)

i.e., any multivariate function of x ≡ (x1, . . . , xn) can be written as a linear superposition
of univariate functions. Although the functions φq are continuous, they are highly non-
smooth and their practical utility for approximation/interpolation has yet to be demon-
strated [4]. Various approximation techniques resembling the above form have been
utilized to represent a function f (x) as a sum of superpositions of low-dimensional func-
tions. Projection pursuit algorithms, multilayer perceptrons and radial basis networks are
most commonly used as dimension reduction techniques [5–9]. Another representation
which writes multivariate output as a superposition of functions of fewer variables is
the function-space extension of the analysis of variance (ANOVA) decomposition com-
monly used in statistics to analyze the variance of a statistical quantity [10–12]. The
ANOVA decomposition is a specific member of high dimensional model representations
(HDMR) [13]. HDMR’s assume the following exact form for the multivariate function:

f (x) ≡ f0 +
∑
i

fi(xi)+
∑
i<j

fij (xi, xj )+ · · · + f12...n(x1, x2, . . . , xn). (2)

Here f0 denotes the zeroth order effect which is a constant everywhere in the domain of
f (x). The function fi(xi) gives the effect associated with the variable xi acting indepen-
dently, although generally nonlinearly, upon the output f . The second order function
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fij (xi, xj ) describes the cooperative effects of the variables xi and xj and higher order
terms reflect the cooperative effects of increasing numbers of variables acting together
to impact upon f . The last term f12...n(x1, . . . , xn) gives any residual dependence of
all the variables locked together in a cooperative way to influence the output f . For
a well-defined problem with rationally chosen physical variables it is natural to expect
that convergence will occur at relatively low order L such that L 	 n; practical im-
plementation indicates that typically L ∼ 3 is often quite adequate [14–18]. If there
is no cooperation between the input variables, then only zeroth order and first order
terms will appear in the expansion. However, even to first order the expansion is not
a linear superposition, as fi(xi) could have an arbitrary dependence on xi . The high
dimensional approximation formulation in this paper is based on HDMR and an effi-
cient means is presented for obtaining its component functions when the sample points
are random. With scattered inputs, the determination of the component functions f0,
{fi(xi)}, {fij (xi, xj )}, etc., requires the evaluation of integrals involving f (x), and they
will be carried out with Monte Carlo integration since it is the most viable algorithm to
carry out integrals in high dimensions.

If it is possible to perform controlled experiments with the system (i.e., if there is
freedom over choosing the input values), then a so called cut-HDMR can be formulated
to represent f (x) in the form (2) in a computationally efficient way [13]. The compu-
tational cost refers to the number of experiments needed to construct the representation.
The cost of the arithmetic operations is not included in this count since most often it will
constitute a negligible portion of the overall cost; the common problem is the scarcity
of the data. The cut-HDMR representation of f (x) can be converted to the ANOVA de-
composition of f (x) without the need for additional experiments [13,18]. However, in
some applications one can not control the experiments (i.e., the nature of the inputs are
inherently random or they are arbitrarily scattered as in chaotic time-series data). This
paper will deal with this latter situation where we will present a random sampled HDMR
(referred to as RS-HDMR) algorithm which will give the ANOVA decomposition of a
multivariate output with random or quasi-random data. The HDMR representations can
also be used for knowledge discovery in large databases to understand the structures
hidden in the database. In this fashion HDMR can be employed to sift the important
variables contributing to a specific output. Furthermore, the HDMR representation can
be used for predictive modelling to build a black-box representation relating a set of
inputs to an output variable.

The paper is organized as follows. Section 2 presents the algorithm for computing
RS-HDMR of f (x). It will be shown that the RS-HDMR component functions can be
constructed by the minimization of a weighted least-squares functional. In section 3,
two applications will be used to illustrate the technique in the text. Applications of
the HDMR concept to other fields by different sampling means is presented in [14–17].
In the context of sensitivity analysis of the variance, it is important to ascertain the
contribution of each of the input variables, or groups of inputs, to the overall statistical
variance of the output f . In this manner we will show how the algorithm presented in this
paper can be used to compute the statistical sensitivity indices [19–22] in the analysis of
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variance, and the efficiency of the algorithm will be shown to significantly exceed that
of prior means. Although one may perform this uncertainty analysis without directly
constructing a model, an HDMR derived model is fundamental to overall system analysis
and it can be used for additional purposes. Along these lines, the second illustration is an
inverse problem in discrete dynamical systems. An HDMR map will be found by using
discrete time-series data, and such maps can be used for at least short-term predictive
purposes. Concluding remarks are presented in section 4.

2. The algorithm

A specific member of the HDMR family in equation (2) is used in sta-
tistics as the ANOVA decomposition [10–12] of a multivariate statistical output
f (x) ≡ f (x1, x2, . . . , xn) which depends on independently distributed random inputs
x1, x2, . . . , xn. A basic conceptual distinction between the ANOVA decomposition and
HDMR concerns the use of the representation in equation (2). ANOVA only exploits
the representation as a means of obtaining the variance components of the output, while
HDMR is after the expansion functions as an input–output map for various purposes.
Without loss of generality, we will assume that f (x) takes values on the unit hypercube
[0, 1]n. The RS-HDMR decomposition of the function of the function f (x) in equa-
tion (2) can be obtained via the minimization of the functional J below:

ε�(x) ≡ f (x)−
[
f0 −

∑
i

fi(xi)−
∑
i<j

fij (xi, xj )− · · · −
∑

i1<···<i�
fi1···i� (xi1 , . . . , xi�)

]
,

J =
∫
[0,1]n

[
ε�(x)

]2
dx1 dx2 . . . dxn (3)

subject to the “null property” of the component functions as constraints:∫
[0,1]

fi1...i� (xi1 , . . . , xi�) dxk = 0 for k = i1, i2, . . . , i�. (4)

The solution of the above minimization problem uniquely gives the following component
functions [13]:

f0 ≡
∫
[0,1]n

f (x) dx,

fi(xi)≡
∫
[0,1]n−1

f (x)
∏
j �=i

dxj − f0,

fij (xi, xj )≡
∫
[0,1]n−2

f (x)
∏

k/∈{i,j}
dxk − fi(xi)− fj (xj )− f0,

...

fi1...i� (xi1 , . . . , xi� )≡
∫
[0,1]n−�

f (x)
∏

k/∈{i1,...,i�}
dxk −

∑
j1<···<j�−1⊂{i1i2...i�}

fj1...j�−1(x)
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−
∑

j1<···<j�−2⊂{i1i2...i�}
fj1...j�−2(x)− · · · −

∑
j

fj (xj )− f0. (5)

The null property in equation (4) serves to assure that the functions are orthogonal,∫
Kn

fi1,...,is (xi1 , . . . , xis )fj1,...,jp (xi1 , . . . , xip ) dx1 dx2 . . . dxn = 0 (6)

for at least one index differing in {i1, . . . , is} and {j1, . . . , jp}, and s may be the same
as p. Due to the orthogonality of the individual functions, the overall statistical variance
of f is equal to the sum of the variances of the individual random variables on the
right hand side of the equation (2). Usually only the lowest order terms (i.e., up to
L ∼ 2) have significant contributions to the overall variance of f and computation of
them is sufficient for an accurate approximation of the variance of f . The RS-HDMR
can be used in a broader context as one may be interested in more than the variance
or some finite moment of the output. The decomposition may be used for representing
the overall input–output relationship of the physical system. As such, the RS-HDMR
expansion forms a multivariate approximation/interpolation scheme as well as a means
for ANOVA to analyze the relevant statistics of a random output.

In this paper we assume that data is arbitrarily scattered throughout the domain of
the input variables. This distinction is made as in many applications one has no freedom
in the sampling of the input variables or the inputs are simply not control variables. If one
has control over the input variables then the computationally efficient cut-HDMR [13,18]
or other sampling strategies like Latin hypercube sampling may be applied for construct-
ing an HDMR equivalent to the RS-HDMR decomposition of the output. In order to gen-
erate a cut-HDMR, the output is sampled on a Cartesian mesh throughout the domain
of the input variables and when the high order correlated effects of the input variables
upon the output are negligible, the number of sample values needed varies polynomi-
cally with the dimensionality of the function. The premise underlying HDMR’s is the
ansatz that high order correlated effects of the inputs upon the output are weak for most
well defined physical systems [13]. The approximation of the output from the scattered
data then reduces to low-dimensional approximation of the component functions, a task
computationally much reduced over approximation of the high dimensional output. The
RS-HDMR decomposition of the output f (x) can be attained once the integrals in equa-
tion (5) are evaluated. There are two issues that need to be addressed to make this effort
practical. The first one concerns the lack of control over the input variables. The in-
tegrals in equation (5) may be carried out via Monte Carlo sampling, but for scattered
data it is not possible to efficiently compute them except for the grand average f0. To be
more specific, f0 is approximated by

f0 ≈ 1

N

N∑
i=1

f
(
Xi
)
, (7)
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where N is the sample size, Xi = (xi1, x
i
2, . . . , x

i
n) is the ith sample input and f (Xi) is

the ith sample output value. The Monte Carlo approximation of the first order j th com-
ponent function at an arbitrary point y ∈ [0, 1] requires the following sum be evaluated:

fj(y) ≈ 1

Ny

Ny∑
i=1

f
(
Xi
y

)
, (8)

where Ny is the sample size and

Xi
y =

(
xi1, . . . , x

i
j−1, y, x

i
j+1, . . . , x

i
n

)
. (9)

This procedure requires sampling the output on a regular net to compute the Monte Carlo
approximations of the integrals in equation (5). The second issue concerns the cost of
computing the above integrals. The number of model evaluations needed for accurately
computing the value of a component function at a single point is of the order N � 103.
This straightforward approach to the above integrals is not efficient. The algorithm we
describe below does not directly compute the above integrals to get the component func-
tions of RS-HDMR decomposition. We start with the following definition.

Definition. Let {φik(xi)}sk=1 be a family of linearly independent approximating bases
for the univariate functions of the variable xi on the unit interval [0, 1]. They can be
chosen as polynomials, orthogonal bases, splines, etc. We assume that each function in
this family has zero mean, i.e.,∫

[0,1]
φik(xi) dxi = 0, k = 1, 2, . . . , s. (10)

If a family { φ̂ik(xi)}sk=1 does not satisfy this condition it can be redefined to do so

φik(xi) ≡ φ̂ik(xi)−
∫
[0,1]

φ̂ik(xi) dxi. (11)

This new family {φik(xi)}sk=1 satisfy the conditions (10). The approximating sub-
space Vi is defined as the linear span of this family, which we denote by Vi ≡
Span{φi1(xi), . . . , φis (xi)}. In a similar manner, if {φijk(xi, xj )}sk=1 is a linearly inde-
pendent approximating family for bivariate functions of the variables xi, xj , then we
assume that they satisfy the following conditions:∫

[0,1]
φijk(xi, xj ) dxi = 0, k = 1, 2, . . . , s,∫

[0,1]
φijk(xi, xj ) dxj = 0, k = 1, 2, . . . , s.

(12)
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If the family { φ̂ijk(xi, xj )}sk=1 does not satisfy these conditions we can redefine a new
family {φijk(xi, xj )}sk=1 to do so

φijk(xi, xj )≡ φ̂ijk(xi, xj )−
∫
[0,1]

φ̂ijk(xi, xj ) dxi −
∫
[0,1]

φ̂ijk(xi, xj ) dxj

+
∫
[0,1]2

φ̂ijk(xi, xj ) dxi dxj , k = 1, 2, . . . , s. (13)

We denote their linear span by Vij ≡ Span{φij1(xi, xj ), . . . , φijs (xi, xj )}. This construc-
tion easily can be generalized to any dimension � � n. We assume that the approximat-
ing family {φi1i2···i�k(xi1 , . . . , xi�)}sk=1 satisfy the following conditions:∫

[0,1]
φi1i2···i�k(xi1 , . . . , xi�) dxim = 0, k = 1, 2, . . . , s, m = 1, 2, . . . , �. (14)

The criteria in equations (10), (12) and (14) are fully consistent with their utilization to
represent the functions as the L.H.S. of equation (2) and the orthogonality criterion in
equation (6). Again the approximating subspace Vi1...i� is defined as the linear span of
the family {φi1i2···i�k(xi1 , . . . , xi�)}sk=1. A natural candidate for Vi1...i� is the �-fold tensor
product of the subspace Vi for any index i, i.e., Vi1...i� consists of linear combinations of
the form

φi1i2···i�k(xi1 , . . . , xi� ) = φi1k1(xi1)φi2k2(xi2) · · ·φi�k�(xi�), (15)

where k ≡ (k1, k2, . . . , k�). The number of basis functions is taken as s which will
depend on the order �. We lastly define V0 as the subspace of constants, i.e., V0 = R1.

The following lemma uses these definitions.

Lemma. The variational problem below has a unique solution

min
u

∫
[0,1]n

[
f (x)− u

]2
dx1 . . . dxn,

u ∈ V0 ⊕
∑
i

Vi ⊕
∑
i<j

Vij ⊕ · · · ⊕
∑

i1<i2···<i�
Vi1...i� . (16)

Proof. We will prove the assertion for � = 2. Generalization to higher dimensions is
immediate by induction. For � = 2 the minimization functional is explicitly written as

J =
∫
[0,1]n

[
f (x)− c0 −

n∑
i=1

s∑
k=1

cikφik(xi)−
n∑

i<j

s∑
k=1

cijkφijk(xi, xj )

]2

dx. (17)

From comparison with equation (3) it is evident that the component functions of the
HMDR are expanded in the special sets of functions {φi1i2···i�k(xi1 , . . . , xi�)}. We will
calculate the coefficients c0, {cij } and {cijk} uniquely to prove the lemma.
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Setting the first variation of J to zero we get the first order conditions necessary
for a minimum

∂J
∂c0
= −2

∫
[0,1]n

[
f (x)−c0−

n∑
i=1

s∑
k=1

cikφik(xi)−
n∑

i<j

s∑
k=1

cijkφijk(xi, xj )

]
dx = 0. (18)

Using identities (10) and (12) gives

−2
∫
[0,1]n

[
f (x)− c0

]
dx = 0, c0 =

∫
[0,1]n

f (x) dx. (19)

Now, consider the first order coefficients {cik}
∂J
∂cpq

= −2
∫
[0,1]n

[
f (x)−c0−

n∑
i=1

s∑
k=1

cikφik(xi)−
∑
i<j

s∑
k=1

cijkφijk(xi, xj )

]
φpq(xp) dx.

(20)
Using identities (10) and (12) gives

∂J
∂cpq
=−2

∫
[0,1]n

[
f (x)−

s∑
k=1

cpkφpk(xp)

]
φpq(xp) dx

=
∫
[0,1]n

f (x)φpq(xp) dx −
s∑

k=1

cpk

∫
[0,1]

φpk(xp)φpq(xp) dxp = 0. (21)

Similarly, in the second order coefficients {cijk} we get

∂J
∂copm

=−2
∫
[0,1]n

[
f (x)− c0 −

n∑
i=1

s∑
k=1

cikφik(xi)

−
∑
i<j

s∑
k=1

cijkφijk(xi, xj )

]
φopm(xo, xp) dx.

Using identities (10) and (12) gives

∂J
∂copm

=−2
∫
[0,1]n

[
f (x)−

s∑
k=1

copkφopk(xo, xp)

]
φopm(xo, xp) dx

=
∫
[0,1]n

f (x)φopm(x0, xp) dx −
s∑

k=1

copk

∫
[0,1]2

φopk(xo, xp)φopm(xo, xp) dxo dxp

= 0.

The above equations can be solved for the coefficients c0, {cik} and {cijk} if the family
of matrices {Mi}, {Mij } defined below are invertible

Mi
k�=

∫
[0,1]

φik(xi)φi�(xi) dxi ,
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Mij

k�=
∫
[0,1]2

φijk(xi, xj )φij�(xi, xj ) dxi dxj . (22)

The linear independence of the basis functions assures that matrices {Mi} and {Mij } are
invertible. The inverses of these matrices can be precomputed and stored, so they do not
siginificantly add to the computational complexity of generating an RS-HDMR. The size
of these matrices is expected to be comfortably small, assuming that the parent function
f (x) is well behaved. The only operations requiring sample values of the output involves
computing the inner product of the function f (x1, . . . , xn) and the basis functions. Since
the input data is assumed to be arbitrarily scattered, we will use Monte Carlo integrations
to compute those quantities. Note that instead of evaluating the integrals in equation (5)
which requires a costly special sampling of the output, we may efficiently compute the
integrals utilizing arbitrarily scattered data. The Monte Carlo approximation for the
above integrals is given by the following sums:

c0 =
∫
[0,1]n

f (x) dx ≈ 1

N

N∑
r=1

f
(
x
(r)
1 , x

(r)
2 , . . . , x(r)n

)
,

cij =
∫
[0,1]n

f (x)φij (xi) dx ≈ 1

N

N∑
r=1

f
(
x
(r)

1 , x
(r)

2 , . . . , x(r)n

)
φij
(
x
(r)
i

)
,

cijk =
∫
[0,1]n

f (x)φijk(xi, xj ) dx ≈ 1

N

N∑
r=1

f
(
x
(r)

1 , x
(r)

2 , . . . , x(r)n

)
φijk

(
x
(r)
i , x

(r)
j

)
. (23)

The inputs must be independent random variables for the convergence behavior of the
Monte Carlo sums to hold. The appendix considers an analog of the development above
assuming that the system is a priori defined with a discrete set of samples possibly over
some sub-domain of the full space [0, 1]n.

The HDMR conjecture coupled with the Monte Carlo approximation for the above
integrals gives a computationally efficient representation of the output f (x1, . . . , xn).
The errors made in Monte Carlo approximation of the coefficients are independent of
the dimension n and of the order 1/

√
N , with N being the sample size.

3. Applications

The HDMR technique is a tool to enhance mathematical modelling of a physical
system where the interest centers on the input–output relationships. There is a broad
family of applications that may exploit the HDMR capabilities [13], and two applications
are given below of the algorithm presented in section 2 and the appendix.

3.1. Sensitivity analysis

Sensitivity analysis of a model aims to determine the importance of an input or a
group of input variables upon the output. Sensitivity analysis of the output variance is
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defined as the analysis of the contribution of each input variable or variable-group uncer-
tainty to the overall variance of the output. If the random inputs consist of independently
distributed uniform random variables, then the component functions will be uncorrelated
and the overall variance can be decomposed according to equation (2) as follows:

σ = E(f − f0)
2 =

∑
i

σi +
∑
i<j

σij + · · · + σ12...n, (24)

where the individual variances are given by

σi1i2...i� =
∫
[0,1]�

(fi1...i� )
2 dxi1 . . . dxi� . (25)

Global sensitivity indices based on these variances are defined as [22]

Si1i2...i� =
σi1i2...i�

σ
, (26)

where Si1i2...i� is the fractional contribution of the input set {xi1 , . . . , xi�} to the variance
of the output. In [22], the Monte Carlo approximation of the integrals in equation (25)
was suggested, which is relevant to the sampling strategy introduced here. Computation
of σi1i2...i� requires the following sum to be evaluated

1

N

N∑
j=1

f (uj , xj )f (vj , xj ), (27)

where the input vector xj contains the variables xi1 , xi2 , . . . , xi� for the j th sample where
N is the sample size. The vectors uj and vj represent the remainder of the variables.
The total number of random numbers which must be generated to compute all individual
variances σi1i2...i� up to the �th order is N × 2n and this number is independent of the
order �. The j th row of the random-number matrix provides the inputs for the product
f (uj , xj )f (vj , xj ). The first n columns of the ith row provides the input vectors uj and
xj and the remaining n columns provides only the input vector vj . The number of model
evaluations to compute all the sums up to the Lth order is given by

N ×
L∑
i=0

n!
(n− i)!i! , (28)

where a fixed sample size of N is used. The random numbers can be generated by either
crude Monte Carlo or other forms of stratified sampling such as like Latin hypercube
sampling.

There are two issues which limit the usefulness of the above sampling strategy.
First, this strategy assumes that we can evaluate the output at predetermined sample
points. They are random, but we require that the function be evaluated at those points.
This may not be the case for applications where the inputs are still random but the data
is just given and one does not have control over evaluating the model at predetermined
points. Second, the computational cost given in equation (28) is very prohibitive at high
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dimensions and given the ansatz that the HDMR decomposition is a dimension reduction
technique, this number is unnecessarily large.

The algorithm given in section 2 can deal with scattered data and is computation-
ally much less severe than the crude Monte Carlo evaluation of the sensitivity indices
desribed above. One sample of size N is enough to compute all the sensitivities above
and the sample size N is determined by the accuracy provided by Monte Carlo simula-
tions. We give the following example for illustration.

The model is an analytical expression of three variables used previously in [22]

f (x1, x2, x3) = sinπx1 + 7(sin πx2)
2 + 0.1π4(x3)

4 sin πx1, (29)

where the joint probability density of the inputs are given by

p(x1, x2, x3)=
3∏

i=1

pi(xi),

pi(xi)=
{ 1

2 for − 1 � xi � 1,

0 for xi < −1, xi > 1.
(30)

The goal is to compute the global sensitivity indices Si1i2...i� , � � 3, defined in equa-
tion (26). In [22] the same example is presented and a sample size of 1024 is used for
the evaluation of each of the integrals σi1i2...i� requiring 1024× 7 evaluations to compute
all the indices up to second order. We applied RS-HDMR to the above model at second
order and used Legendre functions as the approximating bases. We set the number of
basis functions at s = 10. The sensitivity indices corresponding to the sample sizes
N = 1024 are presented in table 1. The first column indicates the exact sensitivities and
the others correspond to sensitivities computed with the respective sample sizes.

RS-HDMR can also be used for extrapolation purposes as well. We carried out
another experiment to assess this. A sample size of 1024 was used for constructing
the HDMR. Chebyshev polynomials were used as the interpolator bases. We fixed the
number of basis functions as s = 10. As the error criterion we have computed the
following quantity for an ensemble of 1000 uniformly distributed points in [0, 1]3:

ε ≡
{
i = 1, . . . , 1000:

∣∣∣∣f i(x)− f i
HDMR(x)

f i(x)

∣∣∣∣ } (31)

Table 1

Indices Exact N = 1024 N = 512

σ1 0.3138 0.3142 0.2998
σ2 0.4424 0.4413 0.3930
σ3 0.0 0.0 0.0
σ12 0.0 0.0 0.0
σ13 0.2436 0.2445 0.2872
σ23 0.0 0.0 0.0
σ123 0.0 0.0 0.0
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Table 2

Sample size 1024 512 256 128

Mean[ ε̂ ] 0.0761 0.1214 0.1489 0.2446
Median[ ε̂ ] 0.0505 0.0768 0.1173 0.1578
Std.dev.[ ε̂ ] 0.1002 0.1489 0.1623 0.2318
Length[ ε̂ ] 981 977 954 911

(i.e., i = 1, . . . , 1000 and f i(x) is the ith sample). However, this criterion can be
misleading at the points where the model output is close to zero. We redefined the error
vector ε again such that large values are not permitted. Since the frequency of these
large values is also important, they were recorded too, i.e., we consider the following
redefined error vector ε̂:

ε̂ ≡ {εi: εi < 1} (32)

and its length Length[ ε̂ ]. The mean, median and the standard deviation about the mean
of the above vector ε̂ corresponding to different sample sizes are shown in table 2. The
length of the vector ε̂ is also given since it is a measure of the domain where the relative
error is smaller than one. As expected the quality of the HDMR approximation is better
with increasing sample size.

3.2. An inverse problem in dynamical systems

The forward problem in dynamical systems is to find the time evolution for a given
initial state x0. For a discrete dynamical system

xn = f (xn−1), n = 1, 2, . . . , (33)

the vector {f n(x0)}, where f n(x0) = f (xn), gives this time evolution with the initial
state x0. The map f here denotes the mathematical model and most often we have
incomplete knowledge of this map. The inverse problem of dynamical systems [23–25]
is to find an approximation f̂ which will be close to the true map f generating the data
x0, f (x0), f

2(x0), . . . , f
N(x0). The approximate map f̂ can be used as a predictive

model for the system and we will use the criterion in equation (31) as a measure of the
discrepancy between f and f̂ . We used RS-HDMR to construct f̂ for the data generated
by the following discrete dynamical system

xn = 0.671 − 0.416xn−1 − 1.014x2
n−1 + 1.738xn−1xn−2

+ 0.836xn−2 − 0.814x2
n−2,

yn = xn + δ

(34)

with the initial conditions

x0 = 1.0, x1 = 0.0. (35)

Here yn denotes the observed quantity and δ represents the measurement error or pres-
ence of noise in the system. We assume that the random variables δ’s are independent,
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Table 3

Std.dev.[δ] 0.05 0.1 0.25

Mean[ ε̂ ] 0.1635 0.2227 0.3338
Median[ ε̂ ] 0.0768 0.1324 0.2684
Std.dev.[ ε̂ ] 0.2076 0.2315 0.2522
Length[ ε̂ ] 464 430 368

identically distributed as a Gaussian with zero mean. An important issue here is to deter-
mine the minimal embedding dimension [26,27] of the data so that a dynamical system
of the form in equation (33) can be written. We assume here that this dimension is
already determined and dynamical system is of the form

xn = f (xn−1, xn−2), yn = xn + δ (36)

consistent with equation (34) having the embedding dimension of two. This example
serves to illustrate the inherently discrete algorithm in the appendix. An RS-HDMR was
constructed to second order L = 2 by using Legendre functions as the approximating
basis. We set the number of basis functions at s = 10. A sample size of N = 512
was used to construct f̂ . The statistics for the error criterion in equation (31) is given in
table 3 with different magnitudes of the noise term in the model. The quality of f̂ was
evaluated with a test sample of N = 512 separate from the sample used to construct f̂ .
The error statistics is given for various values of the standard deviation of δ. As expected,
the accuracy of the approximation decreases with increasing noise δ.

4. Conclusion

High dimensional model representations (HDMR) are a family of multivariate ap-
proximation techniques which are based on the ansatz that high order interaction effects
of the input on the output is usually weak. Theoretical aspects of HDMR’s are given
in [13] and a computationally efficient HDMR is presented in [18]. This efficient HDMR
required that output be sampled at specific points throughout the input domain. In most
applications that is not the case. Inputs are distributed in a random or quasi-random
fashion. The random-sample HDMR (RS-HDMR) presented in this paper handles this
case in a computationally efficient way.

Two examples are chosen to illustrate the application of RS-HDMR. Sensitivity
indices of a multivariate statistical quantity represent the relative contribution of each
input(s) to the overall variance of the output. RS-HDMR was shown to be computation-
ally very efficient to compute sensitivity indices with high accuracy. Predictive mod-
elling for time series is an active area of research [26] for building a dynamical system
from real-life data. RS-HDMR is a multivariate approximation scheme and as such it
can be used to construct a data-generating dynamical system.
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Appendix

In this appendix, we will give the HDMR solution to an inherently discrete for-
mulation of the cost functional presented in section 2. We express the observed data as
f (xi ) ≡ f (xi1, x

i
2, . . . , x

i
n), i = 1, 2, . . . , N , where the index i denotes the ith sample

and N stands for the sample size. By using the cost functional equation (17), the co-
efficients c0, cik, cijk , etc. can be computed as integrals involving the parent function
f (x). Monte Carlo integration is the natural choice when the data is randomly scattered
throughout the domain of f (x). The randomness assumption allows for error estimates
on the coefficients, and these error estimates will scale with 1/

√
N , where N is the

sample size. When the data is inherently non-random, a discrete cost functional of the
form

J =
N∑

m=1

[
f
(
xm
)− c0 −

n∑
i=1

s∑
k=1

cikξik
(
xmi
)−∑

i<j

s∑
k=1

cijkξijk
(
xmi , x

m
j

)]2

(A.1)

can be used to compute the coefficients. However, the error estimates for these coeffi-
cients can not be readily estimated. Even if the HDMR converges at the Lth order, the
coefficients computed by minimizing the functional in equation (A.1) gives an approxi-
mation which is good only where the data is clustered.

We start with the following definition.

Definition. Let {̂ξik(xi)}sk=1 be a family of approximating bases for the univariate func-
tions of the variable xi on the unit interval [0, 1]. These functions can be chosen as
polynomials, orthogonal bases, splines, etc. We will redefine this family so that it obeys
the following summability conditions

ξik(xi) ≡ ξ̂ik(xi)− 1

N

N∑
�=1

ξ̂ik
(
x�i
)
. (A.2)

This new family {ξik(xi)}sk=1 satisfy the following zero-sum condition:

1

N

N∑
�=1

ξik
(
x�i
) = 0. (A.3)

The approximating subspace Vi is defined as the linear span of this family, which we
denote by Vi ≡ Span{ξi1(xi), . . . , ξis(xi)}. In a similar manner, if {̂ξijk(xi, xj )}sk=1 is a
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linearly independent approximating family for bivariate functions of the variables xi, xj ,
then we redefine them to satisfy the following conditions:

ξijk(xi, xj )≡ ξ̂ijk(xi, xj )− 1

N

N∑
�=1

ξ̂ijk
(
xi, x

�
j

)− 1

N

N∑
�=1

ξ̂ijk
(
x�i , xj

)
+ 1

N2

N∑
�=1

N∑
�′=1

ξ̂ijk
(
x�i , x

�′
j

)
. (A.4)

This new family { ξ̂ijk(xi, xj )}sk=1 satisfy the following zero-sum conditions:

1

N

N∑
�=1

ξijk
(
xi, x

�
j

) = 0,
1

N

N∑
�=1

ξijk
(
x�i , xj

) = 0. (A.5)

We denote their linear span by Vij ≡ Span{ξij1(xi, xj ), . . . , ξijs (xi, xj )}. This construc-
tion can easily be generalized to any dimension � � n. We assume that the approximat-
ing family {ξi1i2···i�k(xi1 , . . . , xi� )}sk=1 satisfy the following conditions:

1

N

N∑
m=1

ξi1i2...i�k
(
xi1 , . . . , x

m
ip
, . . . , xi�

) = 0 for all p, 1 � p � �. (A.6)

Again the approximating subspace Vi1...i� is defined as the linear span of the family
{ξi1i2···i�k(xi1 , . . . , xi� )}sk=1. A natural candidate for Vi1...i� is the �-fold tensor product
of the subspace Vi for any index i, i.e., Vi1...i� consists of linear combinations of the form

ξi1i2...i�k(xi1 , . . . , xi� ) = ξi1k1(xi1)ξi2k2(xi2) · · · ξi�k�(xi� ). (A.7)

We lastly define V0 as the subspace of constants, i.e., V0 = R1.

The lemma below uses these definitions.

Lemma. The following variational problem has a unique solution.

min
u

N∑
m=1

[
f
(
xm
)− u

]2
, u ∈ V0 ⊕

∑
i

Vi ⊕
∑
i<j

Vij ⊕ · · · ⊕
∑

i1<i2<···<i�
Vi1...i� . (A.8)

Proof. The proof is the discrete analogue of the proof given in section 2 and it will not
be repeated here.
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